GPGPU-Compatible Archive Based Stochastic Ranking Evolutionary Algorithm (G-ASREA) for Multi-Objective Optimization
نویسندگان
چکیده
In this paper, a GPGPU (general purpose graphics processing unit) compatible Archived based Stochastic Ranking Evolutionary Algorithm (G-ASREA) is proposed, that ranks the population with respect to an archive of non-dominated solutions. It reduces the complexity of the deterministic ranking operator from O(mn) to O(man) and further speeds up ranking on GPU. Experiments compare G-ASREA with a CPU version of ASREA and NSGA-II on ZDT test functions for a wide range of population sizes. The results confirm the gain in ranking complexity by showing that on 10K individuals, G-ASREA ranking is ≈ ×5000 faster than NSGA-II and ≈ ×15 faster than ASREA.
منابع مشابه
Using composite ranking to select the most appropriate Multi-Criteria Decision Making (MCDM) method in the optimal operation of the Dam reservoir
In this study, the performance of the algorithms of whale, Differential evolutionary, crow search, and Gray Wolf optimization were evaluated to operate the Golestan Dam reservoir with the objective function of meeting downstream water needs. Also, after defining the objective function and its constraints, the convergence degree of the algorithms was compared with each other and with the absolut...
متن کاملOptimum allocation of Iranian oil and gas resources using multi-objective linear programming and particle swarm optimization in resistive economy conditions
This research presents a model for optimal allocation of Iranian oil and gas resources in sanction condition based on stochastic linear multi-objective programming. The general policies of the resistive economy include expanding exports of gas, electricity, petrochemical and petroleum products, expanding the strategic oil and gas reserves, increasing added value through completing the petroleum...
متن کاملMulti-objective optimization design of plate-fin heat sinks using an Evolutionary Algorithm Based On Decomposition
This article has no abstract.
متن کاملA MULTI-OBJECTIVE EVOLUTIONARY ALGORITHM USING DECOMPOSITION (MOEA/D) AND ITS APPLICATION IN MULTIPURPOSE MULTI-RESERVOIR OPERATIONS
This paper presents a Multi-Objective Evolutionary Algorithm based on Decomposition (MOEA/D) for the optimal operation of a complex multipurpose and multi-reservoir system. Firstly, MOEA/D decomposes a multi-objective optimization problem into a number of scalar optimization sub-problems and optimizes them simultaneously. It uses information of its several neighboring sub-problems for optimizin...
متن کاملStochastic Fractal Based Multiobjective Fruit Fly Optimization
The fruit fly optimization algorithm (FOA) is a global optimization algorithm inspired by the foraging behavior of a fruit fly swarm. In this study, a novel stochastic fractal model based fruit fly optimization algorithm is proposed for multiobjective optimization. A food source generating method based on a stochastic fractal with an adaptive parameter updating strategy is introduced to improve...
متن کامل